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A bushing is a device used in automotive  suspension systems to cushion the force transmitted 

from the wheel to the frame of  the vehicle. A bushing is essentially a hol low cylinder which is 

bonded to a solid metal shaft at its inner surthce and a metal sleeve at its outer surface. The shall 

is connected to the suspension and the sleeve is connected to the frame. The cylinder provides 

the cushion when it deforms due to relative motion between the shaft and sleeve. The relation 

between the force applied to the shaft or sleeve and its deformation is nonl inear  and exhibits 

features of  viscoelasticity. An explicit  force-displacement  relation has been introduced for multi 

-body  dynamics simulations.  The relation is expressed in terms of  a force relaxation function 

and a method of  determinat ion by experiments on bushings has been developed. Solut ions al low 

for compar ison between the force-displacement  behavior  by experiments and that predicted by 

the proposed method. It is shown that the predictions by the proposed force-displacement  

relat ion are in very good agreement with the experimental  results. 

Key W o r d s : N o n l i n e a r  Viscoelasticity, Bushing, Force Relaxat ion Funct ion 

I.  I n t r o d u c t i o n  

Bushings are structural elements which are used 

in suspension systems of  automobiles  and other 

vehicles. A bushing is, in effect, a ho l low cylinder 

contained between an outer  steel cylindrical  

sleeve and an inner steel cylindrical  rod. The steel 

sleeve and rod are connected to the components  

an the automotive suspension system and are used 

to transfer forces from the wheel to the chassis. 
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Bushings are used to reduce shocks and vibrat ions 

in this connection.  Because those are connected to 

different parts of  the suspension system, the sleeve 

and rod undergo relative displacements and rota- 

tions about  axes both parallel  and perpendicular  

to their common centerline. It is the relative dis- 

placement that al lows for the transmission of  

force through a bushing. 

In analyzing suspension systems that contain 

bushings, engineers use mul t i -body  dynamics 

computer  codes. In the mul t i -body  dynamics co- 

des, the bushings are typically modeled by using 

a system of force-displacement  relations. Thus, 

determining a correct force-displacement  relation 

becomes an important  task in analyzing a bus- 

hing. However ,  a bushing material is viscoelastic 

and nonlinear,  hence, it causes the relation be- 
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tween the nonlinear and time dependent corre- 

sponding forces and displacements as well as 

causing coupling between the different modes of 

response. This viscoelasticity cannot be neglected 

because it is a mechanism of energy dissipation 

that is essential for accurate force calculations. 

Very few studies of the development of force- 

displacement relations for bushings have been 

found in the open literature. Adkins and Gent 

(1954) developed force-displacement relations 

for radial, axial, torsional, and conical modes of 

deformation of bonded cylindrical bushings. 

Since their results are obtained using the linear 

elastic theory, the relations do not account for 

nonlinear, time-dependent effects, or coupling 

between modes. 

Morman et a1.(1981) modeled a bushing mate- 

rial as a nonlinear viscoelastic solid. They as- 

sumed an appropriate constitutive equation and 

presented a finite element method for analyzing 

the response for small amplitude oscillations su- 

perposed on large equilibrium deformations. Al- 

though their method is important for studying 

many aspects of bushing response, it does not 

account for transient response. Thus, it is of 

limited use in a multi-body dynamics code and 

both of these works suffer from the disadvantages 

associated with defining a boundary value prob- 

lem. 

Kim and Youn (2001) proposed a viscoelastic 

constitutive equation for rubber under small os- 

cillatory load superimposed on large static defor- 

mation. The model was extended to a generalized 

viscoelastic constitutive equation including wide- 

ly-used Morman's model. Static deformation cor- 

rection factor was introduced to consider the in- 

fluence of pre-strain on the relaxation function. 

Wineman et a1.(1998) suggested a force-dis- 

placement relation for single mode bushing re- 

sponse that combines nonlinear dependence on 

displacement with the time dependence of vis- 

coelasticity. In particular, force is given by a 

nonlinear single integral expression in terms of a 

force relaxation function, a bushing property, 

which represents the force when the bushing is 

subjected to a step displacement history. They 

described a process for determining the force 

relaxation function for a bushing by mechanical 

testing and data processing and demonstrated this 

process for radial deformations of bushing. 

Lee and Wineman (1999) carried out a study 

using numerical simulations in order to evaluate 

how well the force-displacement relation in 

(Wineman et al., 1998) represented the response 

of a bushing. They used a constitutive equation 

developed by McGuirt and Lianis (1970) from 

experiments on SBR together with the governing 

field equation of nonlinear viscoelasticity and 

carried out numerical simulation of the mec- 

hanical testing program discussed in (Wineman et 

al., 1998) using this numerically generated data. 

They determined an expression for the tbrce re- 

laxation function. Then, they compared predi- 

tions of the force-displacement model proposed 

in (Wineman et al., 1998) with exact predictions 

of the McGuirt and Lianis model. The compari- 

son was very satist:actory. Thus, the study in (Lee 

and Wineman, 1999) provided support for the 

use of force-displacement relation suggested in 

(Wineman et al., 1998). 

The purpose of the present work is to present 

the results of an experimental program for deter- 

mining the force relaxation property for a bushing 

in axial mode. The nonlinear viscoelastic force- 

displacement relation and method of determining 

the force relaxation property are outlined in sec- 

tion 2, in order to make this paper as self con- 

tained as possible. Experimental results are pres- 

ented in section 3. The relaxation property is 

determined in section 4 and its predictive quality 

is presented in section 5. Section 6 contains final 
comments. 

2. Nonlinear Viscoelastic 
Force-Displacement Relation 

We consider a force-displacement relation for 

the bushing which combines nonlinear depen- 

dence on displacement and time effects of vis- 

coelasticity. The simplest relation which meets 

these conditions appears to be that intr, oduced 

by Pipkin and Rogers (1968) for the nonlinear 

viscoelastic response of polymers. In the current 
context, it has the form 
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fo ' 9R(A(s) ,  t - s )  
F(t) =R(A(t), 0) + O(t-s)  ds (l) 

F ( t )  is the function of time and represents the 

force at current time t and s denotes time and 

has the unit of sec. R(A,  t) is a property of the 

bushing and represents the force at time t due to 

a step axial displacement of amount A applied at 

time zero. That is, R (A, t) can be interpreted as 

the axial displacement-dependent force relaxa- 

tion function. It is reasonable to assume that 

R(0  , t) ----0 and that R(A,  t) is a monotonically 

decreasing function of time t. A typical force 

relaxation function is shown in Fig. I. 

By applying integration by parts to Eq. (1), 

the Pipkin-Rogers model can be rewritten as 

lbllows : 

fo t 8R,',ACsl t - s )  dAfs) 
F(t) =R(AIO), t) + OAts) d ~  ds (2) 

Ideally, R(A,  t) can be determined by subjecting 

the bushing to a deformation in which the outer 

sleeve undergoes a step axial displacement with 

respect to the inner rod. This ideal process cannot 

be realized due to the inertia of the testing appa- 

ratus. A method which can be used to determine 

• N(A, t) is outlined here. 

Consider a displacement which increases at a 

constant rate to displacement Ai in time interval 

T~*, and is then held fixed. It is described by 

Ai 
A(t) =~7 ;  t, 0 ~ t ~  T;, (3) 

= a i ,  rj* < t 

where T~.* is defined as the rise time, which is the 

R(A .t ', 

R(A,.0 

R(A,.~c) 

Fig. ! Displacement-dependent tbrce 
function for A ( t ) = A i  

i 

relaxation 

time where the displacement rate in displacement 

vs. time function changes from constant to zero. 

Let this ramp to constant displacement history 

be denoted by A ( A ,  Tj*, t). The force output 

history corresponding to this ramp to constant 

displacement history can be expected to increase 

monotonically until time Tj*, and then relax for 

times t > T~*, when the displacement is held con- 

stant. As Ts* approaches zero, the ramp to con- 

stant displacement control test approaches the 

step displacement control test. Moreover, as Ti* 

approaches zero, the force response can be ex- 

pected to approach the displacement-dependent 

force relaxation function RCAi, t). In order to 

show this, let Eq. (3) be substituted into Eq. (2), 

and consider any time t ~  T~*. Since R(A(0 ) ,  t ) =  

R(0, t) = 0  and d A ( s ) / d s = O ,  s> Tj*, 

( OR(A(s), t - s )  dA(s) ds 
=joT; 8AIs) ds F(t) (4) 

This force will be denoted by /~(Ai, t, rj*). 

In Eq. (4), let the integration variable be 

changed from s to A, A = A i s / r s * .  Also, let t = 

r j*+ t ' ,  where [ denotes a fixed time measured 

from rj*, when the displacement is held constant. 

Then, Eq. (4) becomes 

I A 

R,(A,. [. Tj )=f00 ' 8A dA(5) 

As Tj* approaches zero, Eq. (5) becomes 

lim/~(A~, [, T,*)=f0 ~' 8R(A. [t  /'I r;-0 0A ' dA=R(Ai" (6) 

Let A,, i = l ,  2, 3, " ' ,  na be a set of axial 

displacements and let T~*, j =  l, 2, 3, ..., nr', be 

the set of rise times at which the ramp to constant 

displacement history described in Eq. (3) is car- 

ried out. 

Consider a fixed value of displacement A~ and 

let the rise time T~* decrease as j increases, that is, 

T~*l < Tj*. A set of such histories for T~*, ( j =  I, 

2, 3), is shown in Fig. 2. 

Because of experimental limitations, the limit 

T~*--* 0 can not be reached. This difficulty is 

approached as follows. Let /~exp(Ai, T~*, t) de- 

note the experimentally determined force history 
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response at time t ~ T~*. When the slope of  ramp 

to constant displacement history A(Ai,  Ts*, t) 

changes from positive to zero at the rise time 

Ts*, the slope of the force-time response changes 

from positive to negative at time T~*. Let t be a 

fixed time interval measured from this break in 

the slope at time T f ,  that is, t = t '+  T~*. For  the 

rise times Zs*, j : l ,  2, 3, "", nr', /~exp(Ai, Zs*, 

Z j * + i )  denotes a set of  data points associated' 

with time t and displacement Ai. 

Figure 3 shows plots of the experimentally 

determined force output /~exp(Ai, ~*,  t) versus 

t, with a fixed value at l for several rise times 

Zj*. Moreover, it shows a plot of/~exp(Ai,  T*, 

T* + t )  versus T* for three rise times Zs*. Let 

-~sit (Ai, i, T*) denote a function of  T*, which 
is fit to this set of data points, so that 

~,,,(A,, L T;)=~ox~(A~, T;, T;+i) ,  
Zs*, j =  1, 2, 3, -", n r  (7) 

-~sit(Ai, i, T*) is used to extrapolate the data for 

Zs*, j =  I, 2, 3, ..-, nr" to Ts*'=0. In particular, it 

is assumed that 

lim Rs,t(A,, t, T'; =/~s~(At, t*, 0) 
7"'-0 

=lim/?~,p(A,, T;, T;+[)=R(A,, t*~ (8) 
r;-0 

A choice for -~:it (Ai, L T*) was determined by 

considering the extrapolation. For  a given dis- 

placement Ai and a fixed time interval t,/~sit (At, 
t', T*) is defined by the relation 

1 - - C  -(T°/r) 
/~s/,(A,,l, T*)--- -C,+C2((r* / r ) )  (9) 

01, Cz, and r are constants which are found by 
minimizing 

By substituting Eq. (9) into Eq. (8) and using the 

result l im [ i -- e - ( r ' / ~ ) / ( T * / r )  ] = 1, it is found 
T" 40 

that 

R(A, ,  i ) = Cl-q!- C2 (11) 

The process indicated in Eqs. (10) and (I 1) can 

be carried or/{ on any specified set of displacement 

Ai and times i. This process gives R(Ai ,  [ ) ,  the 

force at time l 'due to an akial displacement Ai. By 

repeating this process for a range of displacement 

Ai and time i, the relaxation function can be 
determined as Fig. 1. 

3. Exper imenta l  Resul t s  

A(t )  

A 

Fig. 2 

T~" T~" Tf t 

Ramp to constant displacement history 
(input) 

F(t) 

i i i [ 
g(,.x, ,i) 

;" '~ i" I. ;" - "*" '"+" 7"" f I T 7 t 7 +t I t 11 t I~ 

Fig. 3 Force output for ramp to constant dis- 
placement control tests 

In this paper, only axial mode deformations 

were considered. Reference and current confi- 

gt~rations tn axial mode are shown in Fig. 4. 

Experiments were carried out on an MTS 858 

(2.5ton) testing machine and bushings were pro- 

vided by a commercial company. The bushing 

was fixed at its outer radius and the inner rod 

F(t) 
d ( t ~  

y 

Fig. 4 Reference and current configurations in axial 
mode 
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Tabl~ 1 Given dis ~lacement histories for experiment 

T,* Tz* 7"3* T4* Ts 
I 

* I T 6 *  

"--- ! 
dx=4 mm 8 sec. 6 sec. 4 sec. 2 sec. I sec. 0.5 sec. 

d2=5 mm 8 sec. 6 sec. 4 sec. 2 sec. 1 sec. 0.5 sec. 

d3=6 mm 8 sec. 6 sec. 4 sec. 2 sec. 1 sec. 0.5 sec. 

d4=7 mm 8 sec. 6 sec. 4 sec. 2 sec. I sec. 0.5 sec. 

d s=8  mm 8 sec. 6 sec. 4 sec. 2 sec. 1 sec. 0.5 sec. 

was subjected to a d i sp lacement  d ( t )  as indica t -  

ed in Fig. 4. In par t icular ,  the r amp  to cons t an t  

d i sp lacement  his tor ies  were as fo l lows :  

di 
d( t )  = .~Tt ,  O~t<__T~* 

z j  
(12) 

= di, T f  < t < 120 sec. 

i : 1 ,  2, 3, 4, 5, j = l ,  2, 3, 4, 5, 6 

The  set of  rise t imes Tj.* and  d i sp lacements  di 

are shown  in Tab le  1. 

Whi le  factors such as aging, amp l i t ude  and  

f requency of  loading,  and  t empera tu re  do  affect 

c o n d i t i o n i n g  and  d e g r a d a t i o n  of  the mater ia l  over  

time, they were not  cons idered  in this  study. It can  

be cons idered  in the future study. 

The  ideal type of  bush ing  test is step displace-  

ment  con t ro l  test. However ,  due to iner t ia  of  the 

test ing equ ipment ,  a t rue step d i sp lacement  con-  

trol  test is not  physical ly  possible.  Therefore ,  a 

r amp to cons tan t  d i sp lacement  was used instead 

of  a step d isplacement .  T he  test con t ro l l e r  was 

p r o g r a m m e d  to increase d i sp lacement  at a con-  

s tant  rate dur ing  a per iod from t ime zero to a rise 

t ime T*  and hold  it fixed at d~ after the rise 

t ime T*.  As the rise t ime T*  of  the r amp  for each 

test decreases, the r amp  to cons t an t  d i sp lacement  

con t ro l  test app roaches  a step d i sp lacement  con-  

t rol  test. Th i r ty  r amp  to cons tan t  d i sp lacement  

con t ro l  tests in Tab le  1 were per formed unti l  t : -  

120 sec. A typical  force ou tpu t  for d ~ : 8  mm is 

shown  in Fig. 5. 

Fo r  each of  the r amp  to cons t an t  d i sp lacement  

con t ro l  tests, the peak force occurs  when  the 

prescr ibed d i sp lacement  changes  from increas ing 

to be ing  held cons tan t  and  the peak load is the 

greatest  at the shor tes t  rise time. The  force relaxes 

to an equ i l i b r ium dur ing  the per iod  in which  the 

3 0  

2 , 5  

l ;  

2 0  : i ! !  

' ° i ' i  

0 5  

O 0  , , , , 

Fig.  5 

f o r  d ~ t O . 5  

. . . . .  f o r  d 8 t l  

f o r  d8t2. 
- - - f o r  d 8 1 4  

. . . . . . .  f o r  d S t 6  

, - . . . . . . .  f o r  d S t 8  

• , • , . , , , 

4 0  6 0  8 0  1 ~ 3 2 o  

t ~ r n e ( s e e  ) 

Force output for d , = 8  mm 

(from experiment) 

d i sp lacement  remains  cons tant .  Th i s  response  is 

found  in typical  viscoelast ic  mater ia ls .  

4. M a t h e m a t i c a l  Representat ion of 
R ( d ,  t)  for the P ipkin-Rogers  Model  

In this sect ion,  we cons ider  a re la t ion  in which  

the force is expressed explici t ly in terms of  the 

d i sp lacement  history,  namely,  the P i p k i n - R o g e r s  

model  presented in sect ion 2. Fo r  present  pur-  

poses, we use the form of  the P i p k i n - R o g e r s  

model  in Eq. (2).  Us ing  the force ex t r apo la t ion  

me thod  descr ibed in sect ion 2 for each of  d i =  

4, 5, 6, 7, 8 mm, the cons tan t  values  of  the force 

re laxa t ion  funct ions  for 0<t<---100 sec. are ob-  

tained.  The  ex t r apo la t ion  process  used was car- 

ried for 0 ~ t ~ 6 0  sec. because the exper iments  

showed  the force was cons tan t  for t > 6 0  sec. They  

are s h o w n  in Fig. 6. 

Note  tha t  the plots  in Fig. 6 were p roduced  by 

specifying data  poin ts  and  let t ing the compu te r  

g raphics  p rog ram produce  a smoo th  curve. Be- 

cause the axial  force is odd  in the axial displace-  

ment ,  the p o l y n o m i a l  con ta ins  on ly  odd  powers  
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of displacement d. Thus, R ( d ,  t) was represent- 

ed as fo l lows:  

R(d ,  t )=dGa(t)  +d3G3(t) (13) 

Since G~(t) and C,~(t) are the functions of  time 

and the coefficients of  d and d s respectively, 

Eq. (13) shows that R(d ,  t) can be expressed 

explicitly by time and displacement.  

Let d m be the value of  a step displacement,  

i.e., d ~ ) = 4 m m ,  d(2~=5 mm, dC3~=6 mm, d <4)= 

7 mm, d<5)=8 mm. Then, the d isplacement-de-  

pendent force relaxation functions for d Cr) re- 

present a data set which can be used for finding 

G,(ta) and C~(t~), ta=(a- l ) / lOsec . ,  a = l .  2, 

3, -.., 601. and shown in Fig. 6. Since time 

interval is defined as A t = 0 . 1  sec., the number  of  

data point  is 601. 

Then, 

R ( d  Cr), ta) =d<r)Gl(&) + (d(r~)3Gs(&) (14) 

where ta=(a-- l ) / lO sec., a = l ,  2, 3, -.., 601.. 

T = l ,  2, 3, 4, 5. 

Then, G1 (ta) and Gs (ta) were determined so as 

to minimize the least-squares error. The least- 

squares error is defined as follows : 

5 
E(&) = ~  (R(d m, &) -d('~G (tJ -(dm)3C~(&))2 (15) 

7=1 

where ta=(a-- l ) / lO sec., a = l ,  2, 3, ..., 601. 

The coefficients, Gl(ta) and Gs(ta) are ob- 

tained at a set of  times ta for ta=(a-- l ) / lO sec., 

a = l ,  2, 3, ..., 601. GI(&) and Gs(ta) are shown 

in Fig. 7. 

Note  that the plots were produced by specifying 

data points and letting the computer  graphics 

program produce a smooth curve. These data can 

be represented by sums of  exponential  functions, 

G~(t) =Ci~+C~e-"~"+C~e -"~'~ (16) 

where i = l ,  3. The parameters (C~a, r~a, a = l ,  2, 

3, f l = 2 ,  3) were found by using the nonl inear  

least-squares method and are shown in Table  2. 

Let the relative error  of  the fit of  Gi(t) to the 

data represented by G~(t) be defined by 

II G,(ta) - G, (to) I1~ 
E,  - x 100 (%) 

II G~ (&)  112 
/~o~ 

~/ a~.]=~ (C~(ta) - G , ( t J  ) z (17) 

= x 1oo(%) 

where t~=(a--l)/ lOsec.,  a = l ,  2, 3,-- . ,  601., i =  

1,3. 

The relative errors are E1=0 .01%,  /£3=0 .05% 

Table 2 Parameters related to displacement-depen- 
dent force relaxation function 

i Ca Ce C~ r,~ r,s 
1 1 .6222  0.0586 0.1860 33.9885 2.8163 

3 2.0179 0.1994 0.2814 38.3531 1.4039 

3 0 -  

2,5, 

20. 

1.5. 

rY 

10 ,  

0.5- 

0.0 

" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  f o r  d = 4  

~ . _ .  - . . . .  f o r  d = 5  

. . . . . . . . .  f o r  d . = 6  

. . . . . . . .  f o r  d = 7  

.......... for d =8 

i 
20 410 60 

t ime(sec . )  

Fig. 6 Displacement-dependent force relaxation 

function for di=4, 5, 6, 7, 8 mm 

30-  

25. 

2.0 -  

- 

( .915-  

7 -  
~ 1.0- 

~ 05. 

0.0 

Fig. 7 

G1 (ta) 
. . . . .  G 3 ( t a )  

1'o ~o ~, ,'o ~ 6'0 
t i rne(sec. )  

Coefficients of R(d, t): & =  ( a -  l ) /10  sec., 

a : l ,  2, 3..--,  601. 
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Therefore, the data (Gi (&) ,  i = 1 ,  3, &=0 ,  0.1, 

0.2, 0.3, ..-, 60 sec.) can be approximated by ((~i 

( t ) ,  i = 1 ,  3) in Eq. (16) with a relative error 

below 0.1%. Plots of the points given by the ex- 

pression in Eq. (16) and the data set are nearly 

indistinguishable. 

Finally, the complete form of  tile P ipkin-  

Rogers model for the axial mode obtiiined by 

combining Eqs. (2), (13), and (16) is as follows : 

F(t)  = R ( d ( 0 ) ,  t) 

+ f o r {  O R ( d ( s ) , t - s )  d (d(s)) } d  s (,8) 
Od(s) ds 

where 

R(d(s),  t)=[Cl~+G2e-t'~'~+C~3e-"~'qd(s) ( 
+ [C3,+ C32e-tm'+ C3ae -'m'] (d(s)) 3 '  19) 

where C~, to, i =1 ,  3, a =1 ,  2, 3 , /3=2 ;  3 are in 

Table 2. 

5. Predict ive  Qual i ty  o f  the 
P ipk in-Rogers  Model  

di 
d ( t )  = T~ ~ t, O<t<T~* 

= di, ~*  _< t _< 60 sec. 
(21) 

i = 1 ,  2, 3, 4, 5, j = l ,  2, 3, 4, 5, 6 

( d i = 4 ,  5 , 6 , 7 ,  8mm ) 

Z~*=0.5, 1, 2, 4, 6, 8 sec. 

The force outputs from the Pipkin-Rogers  model 

for d i = 8  mm are shown in Fig. 8. 

For  comparison, the experimental results for 

0 < t < 6 0  sec. at d ; = 8  mm shown in Fig. 5, are 

modified until t = 6 0  sec. and are shown again in 

Fig. 9. 

3 0 -  

25 ,  

2 . 0 .  

1 5 -  

The Pipkin-Rogers  model in the previous sec- 

tion was introduced as ah approximation to the 

real bushing model. The purpose of this section 

is to discuss the predictive capability of the 

i~ipkin-Rogers model to the real model. Both the 3 

experimental results and the Pipkin-Rogers  mo- 2s 

del were used to determine the force responses to 
2 

specified displacement histories for 0 <  t < 6 0  sec. 
z 

Since both the Pipkin-Rogers  outputs and ex- -~15 

perimental results are vectors, for evaluation pur- 

poses, the relative error E is defined by 
0 . 5  

E-II(the Pipkin and Rogers outputs) -(Experimental results)Ilz × 100(%) (20) o 
II ( gxperimental results)II, 

The particular displacement histories for the ex- 

periment and the Pipkin-Rogers  model are 

i / /  
i / /  

,o_/// // 
0 5 .  

O 0  . , 

1 0  

Fig. 8 

f o r  d S t O . 5  : 

. . . . .  f o r  0 8 t l  

. . . . .  f o r  dSt2  
. . . . .  f o r  d S t 4  

. . . . . . .  f o r  d S t 6  

. . . . .  f o r  d 8 t 8  
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Table 3 Relative errors of the Pipkin-Rogers model to the experimental results 

time (sec.) T* T* 
displacement (mm) ~ T*=0.5 T * = I  T*=2  ~4  T * = 6  =8 

d i=4  9.59% 5.86%o 6.9% 7.71°/oo 9.01% 9.07% 

d ,=5  4.07% 3.15% 3.66% 4.2% 5.02% 5.88% 
d ,=6  1.54% 1.3% 1.67% 2.47% 3.31% 3.61,%o 

d ,=7  4.04% 1.46% 1.5°/oo 1.69% 1.99% 2.3% 

d i=8  5.99% 6.24,%o 6.57%o 6.34% 6.89% 6.8% 
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For all rise times T* and dz=4, 5, 6, 7, 8 mm, 

the comparison between Pipkin-Rogers outputs 

and experimental results for 0 < t < 60 sec. are car- 

ried out. And, the relative errors of the Pipkin- 

Rogers model to the experimental results are 

defined as Eq. (20) and are shown in Table 3. 

For the thirty cases considered, the relative 

errors are below 10°/6o and the Pipkin-Rogers 

model appears to provide satisfactory agreement 

with experimental results. 

6. Summary and Conclusions 

The force-displacement relation for axial mode 

response of a bushing has been studied experi- 

mentally. The proposed relation is explicit, but 

approximate, and is expressed in terms of a force 

relaxation property determined from experimental 

results. The force relaxation property in the ex- 

plicit force-displacement relation was determined 

by a method which extrapolates results obtained 

from experiment. However, since this results can 

be used for the same bushing model in axial mode 

experiment was carried out, it is not possible to 

use all of bushing. 

However, the success of the present study for 

axial mode response suggests that the same ap- 

proach is applied to other bushings and other 

modes, such as torsional or radial modes. The 

development of an explicit force-displacement re- 

lation for coupled mode response should also be 

considered. These are treated in separate studies. 
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